Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Sci Rep ; 14(1): 8417, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600232

Intervertebral disc degeneration (IVDD) is one of the most prevalent causes of chronic low back pain. The role of m6A methylation modification in disc degeneration (IVDD) remains unclear. We investigated immune-related m6A methylation regulators as IVDD biomarkers through comprehensive analysis and experimental validation of m6A methylation regulators in disc degeneration. The training dataset was downloaded from the GEO database and analysed for differentially expressed m6A methylation regulators and immunological features, the differentially regulators were subsequently validated by a rat IVDD model and RT-qPCR. Further screening of key m6A methylation regulators based on machine learning and LASSO regression analysis. Thereafter, a predictive model based on key m6A methylation regulators was constructed for training sets, which was validated by validation set. IVDD patients were then clustered based on the expression of key m6A regulators, and the expression of key m6A regulators and immune infiltrates between clusters was investigated to determine immune markers in IVDD. Finally, we investigated the potential role of the immune marker in IVDD through enrichment analysis, protein-to-protein network analysis, and molecular prediction. By analysising of the training set, we revealed significant differences in gene expression of five methylation regulators including RBM15, YTHDC1, YTHDF3, HNRNPA2B1 and ALKBH5, while finding characteristic immune infiltration of differentially expressed genes, the result was validated by PCR. We then screen the differential m6A regulators in the training set and identified RBM15 and YTHDC1 as key m6A regulators. We then used RBM15 and YTHDC1 to construct a predictive model for IVDD and successfully validated it in the training set. Next, we clustered IVDD patients based on the expression of RBM15 and YTHDC1 and explored the immune infiltration characteristics between clusters as well as the expression of RBM15 and YTHDC1 in the clusters. YTHDC1 was finally identified as an immune biomarker for IVDD. We finally found that YTHDC1 may influence the immune microenvironment of IVDD through ABL1 and TXK. In summary, our results suggest that YTHDC1 is a potential biomarker for the development of IVDD and may provide new insights for the precise prevention and treatment of IVDD.


Intervertebral Disc Degeneration , Humans , Animals , Rats , Intervertebral Disc Degeneration/genetics , Adenine , Methylation , Biomarkers
2.
Eur J Pharmacol ; 960: 176140, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37925132

BACKGROUNDS: Transient receptor potential vanilloid 4 (TRPV4)-mediated astrocyte activation is critical to neuropathic pain. Pregabalin, a widely used drug to treat chronic pain, is reported to lower the intracellular calcium level. However, the molecular mechanism by which pregabalin decreases the intracellular calcium level remains unknown. Purinergic P2Y2 receptor-a member of the G protein-coupled receptor (GPCR) family-regulates calcium-related signal transduction in astrocyte activation. We investigated whether P2Y2 receptor is involved in the pharmacological effects of pregabalin on neuropathic pain. METHODS: Neuropathic pain was induced by chronic compression of the dorsal root ganglion (CCD) in rats. Paw withdrawal mechanical threshold (PWMT) was used for behavioral testing. Intracellular calcium concentration was measured using a fluorescent calcium indicator (Fluo-4 AM). RESULTS: We found that P2Y2 receptor protein was upregulated and astrocytes were activated in the experimental rats after CCD surgery. Lipopolysaccharide (LPS) increased the intracellular calcium concentration and induced astrocyte activation in cultured astrocytes but was prevented via P2Y2 receptor inhibitor AR-C118925 or pregabalin. Furthermore, plasmid-mediated P2Y2 receptor overexpression induced an elevation of the intracellular calcium levels and inflammation in astrocytes, which was abolished by the TRPV4 inhibitor HC-067047. AR-C118925, HC-067047, and pregabalin relieved neuropathic pain and inflammation in rats after CCD surgery. Finally, plasmid-mediated P2Y2 receptor overexpression induced neuropathic pain in rats, which was abolished by pregabalin administration. CONCLUSIONS: Pathophysiological variables that upregulated the P2Y2 receptor/TRPV4/calcium axis contribute to astrocyte activation in neuropathic pain. Pregabalin exerts an analgesic effect by inhibiting this pathway.


Antineoplastic Agents , Neuralgia , Rats , Animals , Pregabalin/pharmacology , Pregabalin/therapeutic use , Astrocytes , TRPV Cation Channels/metabolism , Calcium/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Antineoplastic Agents/pharmacology , Calcium Signaling , Inflammation/drug therapy
3.
Aging (Albany NY) ; 13(21): 24417-24431, 2021 11 12.
Article En | MEDLINE | ID: mdl-34772825

Neuroinflammation is a major contributor to neuropathic pain. Receptor interacting serine/threonine kinase 3 (RIP3) senses cellular stress, promotes inflammatory responses and activates c-Jun N-terminal kinase (JNK) signaling. Here, we assessed the involvement of RIP3-induced JNK signaling in chronic constriction injury (CCI)-induced neuropathic pain. We found that RIP3 inhibitors (GSK'872) and JNK inhibitors (SP600125) not only alleviated the radiant heat response and mechanical allodynia in CCI rats, but also reduced inflammatory factor levels in the lumbar spinal cord. CCI surgery induced RIP3 mRNA and protein expression in the spinal cord. GSK'872 treatment after CCI surgery reduced RIP3 and phosphorylated (p)-JNK expression in the spinal cord, whereas SP600125 treatment after CCI surgery had almost no effect on RIP3. Sinomenine treatment reduced RIP3, p-JNK and c-Fos levels in the spinal cords of CCI rats. These data demonstrated that RIP3 inhibition (particularly via sinomenine treatment) alleviates neuropathic pain by suppressing JNK signaling. RIP3 could thus be a new treatment target in patients with neuropathic pain.


JNK Mitogen-Activated Protein Kinases/metabolism , Neuralgia/metabolism , Neuroinflammatory Diseases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Anthracenes/pharmacology , Benzothiazoles/pharmacology , Cell Line , Constriction , JNK Mitogen-Activated Protein Kinases/genetics , Male , Neuralgia/genetics , Neuroinflammatory Diseases/genetics , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects
4.
Aging (Albany NY) ; 13(14): 18606-18619, 2021 07 29.
Article En | MEDLINE | ID: mdl-34326272

This study focused on the relationship between extracellular-regulated kinase (ERK) and obesity-induced increases in neuropathic pain. We fed rats a high-fat diet to establish the obesity model, and rats were given surgery to establish the chronic compression of the dorsal root ganglia (CCD) model. U0126 was applied to inhibit ERK, and metformin or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) was applied to cause AMP-activated protein kinase (AMPK) activation. Paw withdrawal mechanical threshold (PWMT) were calculated to indicate the level of neuropathic pain. The data indicated that compared with normal CCD rats, the PWMT of obese CCD rats were decreased, accompanied with an increase of ERK phosphorylation, NAD(P)H oxidase 4 (NOX4) protein expression, oxidative stress and inflammatory level in the L4 to L5 spinal cord and dorsal root ganglia (DRG). Administration of U0126 could partially elevate the PWMT and reduce the protein expression of NOX4 and the above pathological changes in obese CCD rats. In vitro, ERK phosphorylation, NOX4 protein expression increased significantly in DRG neurons under the stimulation of palmitic acid (PA), accompanied with increased secretion of inflammatory factors, oxidative stress and apoptosis level, while U0126 partially attenuated the PA-induced upregulation of NOX4 and other pathological changes. In the rescue experiment, overexpression of NOX4 abolished the above protective effect of U0126 on DRG neurons in high-fat environment. Next, we explore upstream mechanisms. Metformin gavage significantly reduced neuropathic pain in obese CCD rats. For the mechanisms, activating AMPK with metformin (obese CCD rats) or AICAR (DRG neurons in a high-fat environment) not only inhibited the ERK-NOX4 pathway, but also improved oxidative stress and inflammation caused by high-fat. In conclusion, the AMPK-ERK-NOX4 pathway may has a pivotal role in mediating obesity-induced increases in neuropathic pain.


AMP-Activated Protein Kinases/metabolism , Ganglia, Spinal , MAP Kinase Signaling System , NADPH Oxidase 4/metabolism , Neuralgia/etiology , Obesity/complications , Spinal Cord , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Apoptosis , Butadienes/pharmacology , Diet, High-Fat , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Hypoglycemic Agents/pharmacology , Inflammation , Male , Metformin/pharmacology , Neuralgia/metabolism , Nitriles/pharmacology , Obesity/metabolism , Oxidative Stress , Pain Threshold , Phosphorylation , Rats, Wistar , Ribonucleotides/pharmacology , Spinal Cord/metabolism , Spinal Cord/pathology
5.
Aging (Albany NY) ; 13(1): 389-410, 2020 12 03.
Article En | MEDLINE | ID: mdl-33281117

Adaptor molecule downstream of kinase-3 (DOK3) is a vital regulator of innate immune responses in macrophages and B cells, and G-protein-coupled receptor 84 (GPR84) is significant in mediating the biosynthesis and maintenance of inflammatory mediators that are induced by neuropathic pain in microglia. In the present study, we determined the role of DOK3 in activating microglia-induced neuropathic pain and investigated the underlying mechanisms associated with GPR84. We found that knockdown of DOK3 in microglial cells dramatically reduced the levels of inflammatory factors, and we uncovered a physical association between DOK3 and GPR84 in the induction of inflammatory responses. We also observed that neuropathic pain and inflammatory responses induced by chronic constriction injury (CCI) of the sciatic nerve or intrathecal injection of a GPR84 agonist were compromised in DOK3-/- mice in vivo. Finally, enforced expression of DOK3 provoked inflammatory responses, and administration of pregabalin relieved neuropathic pain via inhibition of DOK3 expression. In conclusion, DOK3 induced neuropathic pain in mice by interacting with GPR84 in microglia. We hypothesize that targeting the adaptor protein DOK3 may open new avenues for pharmaceutical approaches to the alleviation of neuropathic pain in the spinal cord.


Adaptor Proteins, Signal Transducing/genetics , Microglia/metabolism , Neuralgia/genetics , Receptors, G-Protein-Coupled/metabolism , Adaptor Proteins, Signal Transducing/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Analgesics/pharmacology , Animals , Cell Line , Gene Knockdown Techniques , Inflammation , Mice , Mice, Knockout , Microglia/immunology , Neuralgia/immunology , Neuralgia/metabolism , Pregabalin/pharmacology , Receptors, G-Protein-Coupled/agonists , Sciatic Nerve/injuries
6.
Neurosci Lett ; 716: 134630, 2020 01 18.
Article En | MEDLINE | ID: mdl-31790718

BACKGROUND: The aim of this study was to investigate the effects of aquaporin 1 (AQP1) knockdown on allodynia in rats with chronic compression of the dorsal root ganglia (DRG) and the role of TRPV4 in these effects. METHODS: Adult male Wistar rats were subjected to chronic compression of the dorsal root ganglia (CCD) via surgery. Behavioral tests were performed to calculate the paw withdrawal mechanical threshold (PWMT). Gene silence was induced by injecting rats with lentivirus expressing AQP1 short hairpin RNA (shRNA, Lv-shAQP1). Western blot analyses were performed to examine AQP1 and TRPV4 protein expression. The concentration of cyclic guanosine monophosphate (cGMP) was determined via enzyme-linked immunosorbent assay. RESULTS: AQP1 protein levels in DRG neurons were significantly increased in CCD rats and were accompanied by a decrease in the PWMT. Lentivirus-mediated RNA interference of AQP1 decreased AQP1 protein expression in CCD rats and normalized their PWMT, but not in rats infected with lentivirus-expressing negative control short hairpin RNA. Furthermore, AQP1 was identified as a cGMP-gated channel. cGMP concentration was upregulated in CCD rats. This effect was attenuated by treatment with a cGMP inhibitor. Additionally, the cGMP inhibitor decreased the mechanical allodynia and AQP1 protein expression in CCD rats. Finally, levels of TRPV4 expression were upregulated in DRG neurons and the L4/L5 spinal cord following surgery, and these effects were reversed by treatment with Lv-shAQP1 or a cGMP inhibitor. CONCLUSION: AQP1 plays a vital role in CCD-induced allodynia as Lv-shAQP1 significantly reduced the allodynia in CCD rats by inhibiting TRPV4 expression.


Aquaporin 1/metabolism , Ganglia, Spinal/metabolism , Neuralgia/metabolism , TRPV Cation Channels/metabolism , Animals , Cyclic GMP , Ganglia, Spinal/injuries , Hyperalgesia/metabolism , Male , Nerve Compression Syndromes/metabolism , Rats , Rats, Wistar
7.
J Neuroinflammation ; 16(1): 271, 2019 Dec 17.
Article En | MEDLINE | ID: mdl-31847848

BACKGROUND: Neuropathic pain is one of the most debilitating of all chronic pain syndromes. Intrathecal (i.t.) bone marrow stromal cell (BMSC) injections have a favorable safety profile; however, results have been inconsistent, and complete understanding of how BMSCs affect neuropathic pain remains elusive. METHODS: We evaluated the analgesic effect of BMSCs on neuropathic pain in a chronic compression of the dorsal root ganglion (CCD) model. We analyzed the effect of BMSCs on microglia reactivity and expression of purinergic receptor P2X4 (P2X4R). Furthermore, we assessed the effect of BMSCs on the expression of transient receptor potential vanilloid 4 (TRPV4), a key molecule in the pathogenesis of neuropathic pain, in dorsal root ganglion (DRG) neurons. RESULTS: I.t. BMSC transiently but significantly ameliorated neuropathic pain behavior (37.6% reduction for 2 days). We found no evidence of BMSC infiltration into the spinal cord parenchyma or DRGs, and we also demonstrated that intrathecal injection of BMSC-lysates provides similar relief. These findings suggest that the analgesic effects of i.t. BMSC were largely due to the release of BMSC-derived factors into the intrathecal space. Mechanistically, we found that while i.t. BMSCs did not change TRPV4 expression in DRG neurons, there was a significant reduction of P2X4R expression in the spinal cord microglia. BMSC-lysate also reduced P2X4R expression in activated microglia in vitro. Coadministration of additional pharmacological interventions targeting P2X4R confirmed that modulation of P2X4R might be a key mechanism for the analgesic effects of i.t. BMSC. CONCLUSION: Altogether, our results suggest that i.t. BMSC is an effective and safe treatment of neuropathic pain and provides novel evidence that BMSC's analgesic effects are largely mediated by the release of BMSC-derived factors resulting in microglial P2X4R downregulation.


Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Microglia/metabolism , Neuralgia/metabolism , Receptors, Purinergic P2X4/metabolism , Spinal Cord/metabolism , Animals , Injections, Spinal , Male , Rats , Rats, Wistar
8.
J Cell Biochem ; 120(5): 8110-8119, 2019 May.
Article En | MEDLINE | ID: mdl-30426552

BACKGROUNDS: Neuropathic pain is an abnormal pain, which is related to the activation of extracellular-regulated kinase (ERK) signaling. This study was to investigate the effects of ERK knockdown via lentivirus-mediated RNA interference on allodynia in rats with chronic compression of the dorsal root ganglia (DRG) and to uncover the potential mechanisms. METHODS: The model of chronic compression of the dorsal root ganglia (CCD) was established in rats by surgery. Gene silence was induced by injecting rats with lentivirus expressing ERK short hairpin RNA (shRNA). Behavioral test was performed by calculating paw withdrawal mechanical threshold (PWMT) and thermal paw withdrawal latency (TPWL). RESULTS: We firstly generated lentivirus expressing ERK shRNA to downregulate ERK gene expression both in vitro and in vivo by using Western blot analysis and quantitative reverse transcription polymerase chain reaction. In CCD, ERK mRNA, and protein levels in DRG neurons were dramatically increased, accompanied with decreased PWMT and TPWL. Lentivirus-mediated RNA interference decreased ERK gene expression in DRG neurons and normalized the PWMT and TPWL in CCD rats, but not in rats infected with lentivirus expressing negative control shRNA. Further, calcium responses of DRG neurons to the hypotonic solution and 4α-phorbol 12,13-didecanoate were enhanced in CCD rats, which were suppressed by lentivirus-mediated ERK gene silence. Finally, the levels of transient receptor potential vanilloid 4 gene expressions in DRG neurons and L4 to L5 spinal cord isolated from CCD rats were dramatically upregulated, which were reversed by lentivirus-mediated ERK gene knockdown. CONCLUSION: Lentivirus-mediated RNA interference (RNAi) silencing targeting ERK might reverse CCD-induced neuropathic pain in rats through transient receptor potential vanilloid 4.

9.
Article En | MEDLINE | ID: mdl-27504140

The aim of the present study was to investigate whether the MAPK pathways were involved in the mechanism of neuropathic pain in rats with chronic compression of the dorsal root ganglion. We determined the paw withdrawal mechanical threshold (PWMT) of rats before and after CCD surgery and then after p38, JNK, or ERK inhibitors administration. Western blotting, RT-PCR, and immunofluorescence of dorsal root ganglia were performed to investigate the protein and mRNA level of MAPKs and also the alternation in distributions of positive neurons in dorsal root ganglia. Intrathecal administration of MAPKs inhibitors, SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), and U0126 (ERK inhibitor), resulted in a partial reduction in CCD-induced mechanical allodynia. The reduction of allodynia was associated with significant depression in the level of both MAPKs mRNA and protein expression in CCD rats and also associated with the decreased ratios of large size MAPKs positive neurons in dorsal root ganglia. In conclusion, the specific inhibitors of MAPKs contributed to the attenuation of mechanical allodynia in CCD rats and the large size MAPKs positive neurons in dorsal root ganglia were crucial.

10.
Biomed Res Int ; 2016: 6978923, 2016.
Article En | MEDLINE | ID: mdl-27366753

The aim of this study was to investigate the relationships among TRPV4, p38, and neuropathic pain in a rat model of chronic compression of the dorsal root ganglion. Mechanical allodynia appeared after CCD surgery, enhanced via the intrathecal injection of 4α-phorbol 12,13-didecanoate (4α-PDD, an agonist of TRPV4) and anisomycin (an agonist of p38), but was suppressed by Ruthenium Red (RR, an inhibitor of TRPV4) and SB203580 (an inhibitor of p38). The protein expressions of p38 and P-p38 were upregulated by 4α-PDD and anisomycin injection but reduced by RR and SB203580. Moreover, TRPV4 was upregulated by 4α-PDD and SB203580 and downregulated by RR and anisomycin. In DRG tissues, the numbers of TRPV4- or p38-positive small neurons were significantly changed in CCD rats, increased by the agonists, and decreased by the inhibitors. The amplitudes of ectopic discharges were increased by 4α-PDD and anisomycin but decreased by RR and SB203580. Collectively, these results support the link between TRPV4 and p38 and their intermediary role for neuropathic pain in rats with chronic compression of the dorsal root ganglion.


Nerve Compression Syndromes/metabolism , Neuralgia/metabolism , Signal Transduction , TRPV Cation Channels/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Chronic Disease , Electrophysiological Phenomena/drug effects , Ganglia, Spinal/pathology , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Injections, Spinal , Male , Nerve Compression Syndromes/pathology , Neuralgia/pathology , Pain Threshold , Phosphorylation , Rats, Wistar , TRPV Cation Channels/antagonists & inhibitors
...